数据安全与密码学基础

密码学基础模型

  • Alice与Bob在加密通信的过程中,由Eve对两人进行攻击(解密)。此时Alice与Bob拥有secret key,而Eve不知道这个key

Gen()sk(secret key)Gen(\cdot)\rightarrow sk(secret\ key), the process of generate secret key contains randomness.

Enc(sk,M)CEnc(sk,M)\rightarrow C, at most of time encryption and decryption are not random

Dec(sk,C)MDec(sk,C)\rightarrow M

  • How to define “Correctness”
    • M is message space, K is secret key space
    • mM,P[Dec(Enc(sk,m))=m]=1\forall m\in M,P[Dec(Enc(sk,m))=m]=1

Power of adversary

  • Can the adversary know (Gen, Enc, Dec)
    Assumption: if the security of the Cryptosystem highly relies on the fact that “Adv does not know (Gen, Enc, Dec)”
    Eventually leaks, costs much

Provable Security

In traditional age, people use

  • shift encryption
    Too easy, the sk space is only 25
  • substantial encryption
    not that easy, but can be attack by frequency attack

proofevidence{Security DefinitionMathematic AssumptionReductionproof\rightarrow evidence\rightarrow\begin{cases}Security\ Definition\\Mathematic\ Assumption\\Reduction\end{cases}

If \exist Attacker A that breaks the Security of Π\Pi, then there is B=RAB=R^A that solve the Math Problem

也就是如果一个数学问题目前没有很好的解决方案,那么相对应的加密算法就也不会有很好的破解方法,而该加密算法如果被解决,那么也就能基本解决相应的数学问题。

Definition (Shannon Privacy)

Given Π=(Gen,Enc,Dec,M,K)\Pi = (Gen, Enc, Dec, M, K), we say Π\Pi is Shannon Privacy, with respect to Distribution D if tM,cC,PmD[m=t]=PmD,skGen[m=tEnc(sk,m)=c]\forall t\in M, c\in C, P_{m\leftarrow D}[m=t]=P_{m\leftarrow D,sk\leftarrow Gen}[m=t|Enc(sk,m)=c]

即攻击者即使知道了密文也无法获取任何额外信息,我们称Π\Pi是香农安全的。

数学表达上即先验概率(知道密文前)与后验概率(知道密文后)相等

Perfect Privacy

The Distribution of the Ciphertext is always identical

m1,m2M,c,P[Enc(sk,m1)=c]=P[Enc(sk,m2),c]\forall m_1,m_2\in M, c,P[Enc(sk,m_1)=c]=P[Enc(sk,m_2),c]

任意明文加密后,等于特定密文的概率都是相等的。


数据安全与密码学基础
http://example.com/2024/09/12/Cryptography/
作者
Penner
发布于
2024年9月12日
许可协议