数据安全与密码学基础
密码学基础模型
- Alice与Bob在加密通信的过程中,由Eve对两人进行攻击(解密)。此时Alice与Bob拥有secret key,而Eve不知道这个key
, the process of generate secret key contains randomness.
, at most of time encryption and decryption are not random
- How to define “Correctness”
- M is message space, K is secret key space
Power of adversary
- Can the adversary know (Gen, Enc, Dec)
Assumption: if the security of the Cryptosystem highly relies on the fact that “Adv does not know (Gen, Enc, Dec)”
Eventually leaks, costs much
Provable Security
In traditional age, people use
- shift encryption
Too easy, the sk space is only 25 - substantial encryption
not that easy, but can be attack by frequency attack - …
If Attacker A that breaks the Security of , then there is that solve the Math Problem
也就是如果一个数学问题目前没有很好的解决方案,那么相对应的加密算法就也不会有很好的破解方法,而该加密算法如果被解决,那么也就能基本解决相应的数学问题。
Definition (Shannon Privacy)
Given , we say is Shannon Privacy, with respect to Distribution D if
即攻击者即使知道了密文也无法获取任何额外信息,我们称是香农安全的。
数学表达上即先验概率(知道密文前)与后验概率(知道密文后)相等
Perfect Privacy
The Distribution of the Ciphertext is always identical
任意明文加密后,等于特定密文的概率都是相等的。
数据安全与密码学基础
http://example.com/2024/09/12/Cryptography/