微甲II-重积分的应用

.

  1. 能用重积分解决的实际问题的特点
    • 所求量是分布在有界闭域上的整体量
    • 所求量对区域具有可加性
  2. 用重积分解决问题的方法:用微元分析法建立积分式

立体体积

曲顶柱体的顶为连续曲面z=f(x,y),(x,y)Dz=f(x,y),(x,y)\in D,则其体积为

V=Df(x,y)dxdyV=\iint_Df(x,y)\mathrm{d}x\mathrm{d}y

占有空间有界域Ω\Omega的立体的体积为

V=DdxdydzV=\iiint_D\mathrm{d}x\mathrm{d}y\mathrm{d}z

例1

求曲面S1:z=x2+y2+1S_1:z=x^2+y^2+1 任一点的切平面与曲面S2:z=x2+y2S_{2}:z=x^{2}+y^{2}所围立体的体积 VV

曲面S1S_1在点(x0,y0,z0)(x_0,y_0,z_0)的切平面的方程为

z=2x0x+2y0y+1x02y02z=2x_0x+2y_0y+1-x_0^2-y_0^2

与曲面z=x2+y2z=x^2+y^2的交线在xOyxOy面上投影为

(xx0)2+(yy0)2=1\left(x-x_0\right)^2+\left(y-y_0\right)^2=1

V=D[2x0x+2y0y+1x02y02x2y2]dxdy=[1((xx0)2+(yy0)2)]dxdyxx0=rcosθ,yy0=rsinθ=πDr2rdrdθ=π02πdθ01r3dr=π2\begin{aligned}\therefore V&=\iint_D[2x_{0}x+2y_{0}y+1-x_{0}^{2}-y_{0}^{2}-x^{2}-y^{2}]\mathrm{d}x\mathrm{d}y\\ &=[1-((x-x_0)^2+(y-y_0)^2)]\mathrm{d}x\mathrm{d}y\\ &\downarrow\text{令}x-x_0=r\cos\theta,y-y_0=r\sin\theta\\ &=\pi-\iint_Dr^2\cdot r\mathrm{d}r\mathrm{d}\theta=\pi-\int_0^{2\pi}\mathrm{d}\theta\int_0^1r^3\mathrm{d}r=\frac\pi2 \end{aligned}

曲面的面积

设光滑曲面S:z=f(x,y),(x,y)DS:z=f(x,y),(x,y)\in D,则面积AA可看成曲面上各点M(x,y,z)M(x,y,z)处小切面的面积dA\mathrm{d}A无限积累而成,设它在DD上的投影为dσ\mathrm{d}\sigma,则

dσ=cosγdAcosγ=11+fx2(x,y)+fy2(x,y)dA=1+fx2(x,y)+fy2(x,y)dσ\begin{aligned} &\mathrm{d}\sigma =\cos\gamma\cdot\mathrm{d}A \\ &\downarrow\cos\gamma=\frac1{\sqrt{1+{f_x}^2(x,y)+{f_y}^2(x,y)}} \\ &\mathrm{d}A =\sqrt{1+{f_x}^2(x,y)+{f_y}^2(x,y)}\mathrm{d}\sigma \end{aligned}

故有曲面公式

A=D1+(zx)2+(zy)2dxdyA=\iint_{D}\sqrt{1+(\frac{\partial z}{\partial x})^{2}+(\frac{\partial z}{\partial y})^{2}}\mathrm{d}x\mathrm{d}y

例2

计算双曲抛物面z=xyz=xy被柱面x2+y2=R2x^2+y^2=R^2所截出的面积AA

曲面在xOyxOy上的投影为D:x2+y2R2D:x^2+y^2\le R^2,则

A=D1+zx2+zy2dxdy=D1+x2+y2dxdy=02πdθ0R1+r2rdr=23π[(1+R2)321)]\begin{aligned} A&=\iint_{D}\sqrt{1+z_{x}^{2}+z_{y}^{2}}\mathrm{d}x\mathrm{d}y\\ &=\iint_{D}\sqrt{1+x^{2}+y^{2}}\mathrm{d}x\mathrm{d}y\\ &=\int_0^{2\pi}\mathrm{d}\theta\int_0^R\sqrt{1+r^2}r\mathrm{d}r\\ &=\frac23\pi\left[\left(1+R^2\right)^{\frac32}-1)\right] \end{aligned}

例3

计算半径为aa的球的表面积

利用球坐标方程,设球面方程为r=ar=a,球面面积元素为dA=a2sinφdφdθ\mathrm{d}A=a^2\sin\varphi\mathrm{d}\varphi\mathrm{d}\theta

A=a202πdθ0πsinφdφ=4πa2\therefore A=a^2\int_0^{2\pi}\mathrm{d}\theta\int_0^\pi\sin\varphi\mathrm{d}\varphi=4\pi a^2

物体的质心

设空间有nn个质点,分别位于(xk,yk,zk)(x_k,y_k,z_k),其质量分别为mkm_k,由力学知,该质点系的质心坐标为

x=k=1nxkmkk=1nmky=k=1nykmkk=1nmkz=k=1nzkmkk=1nmk\overline{x}=\frac{\sum_{k=1}^{n}x_km_k}{\sum_{k=1}^nm_k}\\ \overline{y}=\frac{\sum_{k=1}^{n}y_km_k}{\sum_{k=1}^nm_k}\\ \overline{z}=\frac{\sum_{k=1}^{n}z_km_k}{\sum_{k=1}^nm_k}

Ω\Omega分成nn小块,任取一点(ξk,ηk,ζk)(\xi_k,\eta_k,\zeta_k),有

xk=1nξkρ(ξk,ηk,ζk)Δvkk=1nρ(ξk,ηk,ζk)Δvk\overline{x}\approx\frac{\sum_{k=1}^n\xi_k\rho(\xi_k,\eta_k,\zeta_k)\Delta v_k}{\sum_{k=1}^n\rho(\xi_k,\eta_k,\zeta_k)\Delta v_k}

令区域直径λ0\lambda\to0,即得

x=Ωxρ(x,y,z)dxdydzΩρ(x,y,z)dxdydz\overline{x}=\frac{\iiint_{\Omega}x\rho(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}{\iiint_{\Omega}\rho(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z}

ρ(x,y,z)\rho(x,y,z)\equiv常数时,则得形心坐标

x=ΩxdxdydzV\overline{x}=\frac{\iiint_\Omega x\mathrm{d}x\mathrm{d}y\mathrm{d}z}{V}

例4

求位于两圆r=2sinθr=2\sin\thetar=4sinθr=4\sin\theta之间均匀薄片的质心

利用对称性可知x=0\overline{x}=0

y=1ADydxdy=13πDr2sinθdrdθ=13π0πsinθdθ2sinθ4sinθr2dr=569π0πsin4θdθ=569π20π/2sin4θdθ=569π23412π2=73\begin{aligned} \overline{y}& =\frac1A\iint_Dy\mathrm{d}x\mathrm{d}y \\ &=\frac1{3\pi}\iint_Dr^2\sin\theta\mathrm{d}r\mathrm{d}\theta \\ &=\frac1{3\pi}\int_0^\pi\sin\theta\mathrm{d}\theta\int_{2\sin\theta}^{4\sin\theta}r^2\mathrm{d}r=\frac{56}{9\pi}\int_0^\pi\sin^4\theta\mathrm{d}\theta \\ &=\frac{56}{9\pi}\cdot2\int_0^{\pi/2}\sin^4\theta\mathrm{d}\theta=\frac{56}{9\pi}\cdot2\cdot\frac34\cdot\frac12\cdot\frac\pi2=\frac73 \end{aligned}

物体的转动惯量

zz轴的转动惯量为

dIz=(x2+y2)ρ(x,y,z)dv\mathrm{d}I_z=(x^2+y^2)\rho(x,y,z)\mathrm{d}v

因此物体对zz轴的转动惯量为

Iz=Ω(x2+y2)ρ(x,y,z)dxdydzI_z=\iiint_{\Omega}(x^2+y^2)\rho(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z

对于另外两轴类似,对于原点转动惯量为

IO=Ω(x2+y2+z2)ρ(x,y,z)dxdydzI_O=\iiint_{\Omega}(x^2+y^2+z^2)\rho(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z

例5

求半径为aa的均匀半圆薄片对其直径的转动惯量

建立坐标系如图

Ix=Dμy2dxdy=μDr3sin2θdrdθ=μ0πsin2θdθ0ar3dr=14μa4212π2=14Ma2\begin{aligned} \therefore I_x&=\iint_D\mu y^2\mathrm{d}x\mathrm{d}y=\mu\iint_D r^3\sin^2\theta\mathrm{d}r\mathrm{d}\theta\\ &=\mu\int_0^\pi\sin^2\theta\mathrm{d}\theta\int_0^ar^3\mathrm{d}r\\ &=\frac14\mu a^4\cdot2\cdot\frac12\cdot\frac\pi2\\ &=\frac14Ma^2 \end{aligned}

物体的引力

dFx=Gρ(x,y,z)(xx0)r3dv\mathrm{d}F_x=G\frac{\rho(x,y,z)(x-x_0)}{r^3}\mathrm{d}v

引力分量为

Fx=GΩρ(x,y,z)(xx0)r3dvF_{x} =G\iiint_{\Omega}\frac{\rho\left(x,y,z\right)\left(x-x_{0}\right)}{r^{3}}\mathrm{d}v

其中r=(xx0)2+(yy0)2+(zz0)2r=\sqrt{\left(x-x_0\right)^2+\left(y-y_0\right)^2+\left(z-z_0\right)^2}

例6

设面密度为μ\mu,半径为RR的圆形薄片x2+y2R2x^2+y^2\le R^2,求它对位于点M0(0,0,a)M_0(0,0,a)处的单位质量质点的引力

由对称性知引力F=(0,0,Fz)\vec{F}=(0,0,F_z)

dFz=Gμ(0a)dσd3=Gaμdσ(x2+y2+a2)3/2\mathrm{d}F_z=G\frac{\mu(0-a)\mathrm{d}\sigma}{d^3}=-Ga\mu\frac{\mathrm{d}\sigma}{(x^2+y^2+a^2)^{3/2}}

Fz=GaμDdσ(x2+y2+a2)3/2=Gaμ02πdθ0Rrdr(r2+a2)3/2=2πGaμ(1R2+a21a)\begin{aligned} \therefore F_z&=-Ga\mu\iint_D\frac{\mathrm{d}\sigma}{(x^2+y^2+a^2)^{3/2}}\\ &=-Ga\mu\int_0^{2\pi}\mathrm{d}\theta\int_0^R\frac{r\mathrm{d}r}{(r^2+a^2)^{3/2}}\\ &=2\pi Ga\mu(\frac1{\sqrt{R^2+a^2}}-\frac1a) \end{aligned}


微甲II-重积分的应用
http://example.com/2024/05/15/Calculus-A-II-The-application-of-multiple-integrals/
作者
Penner
发布于
2024年5月15日
许可协议