微甲II-隐函数求导

隐函数的偏导数

定理一

F(x,y)F(x,y)P(x0,y0)P(x_0,y_0)的某一邻域内满足以下条件

{具有连续的偏导数F(x0,y0)=0Fy(x0,y0)0\begin{aligned} \begin{cases} \text{具有连续的偏导数}\\ F(x_0,y_0)=0\\ F_y(x_0,y_0)\ne 0 \end{cases} \end{aligned}

F(x,y)=0F(x,y)=0在点x0x_0的某一邻域内可以确定y=f(x)y=f(x)满足y0=f(x0)y_0=f(x_0),并且有连续导数

dydx=FxFy(隐函数求导公式)\frac{dy}{dx}=-\frac{F_x}{F_y}\text{(隐函数求导公式)}

证明略。

推导

F(x,f(x))=0F(x,f(x))=0,两边对xx求导,有Fx+Fydydx=0dydx=FxFy\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\frac{dy}{dx}=0\Rightarrow \frac{dy}{dx}=-\frac{F_x}{F_y}​。

F(x,y)F(x,y)二阶偏导数也连续,则可以求隐函数的二阶导数

d2ydx2=x(FxFy)+y(FxFy)dydx=FxxFyFyxFxFy2FxyFyFyyFxFy2(FxFy)=FxxFy22FxyFxFy+FyyFx2Fy3\begin{aligned} \frac{\mathrm{d}^2y}{\mathrm{d}x^2}& =\frac\partial{\partial x}(-\frac{F_x}{F_y})+\frac\partial{\partial y}(-\frac{F_x}{F_y})\cdot\frac{\mathrm{d}y}{\mathrm{d}x} \\ &=-\frac{F_{xx}F_y-F_{yx}F_x}{F_y^2}-\frac{F_{xy}F_y-F_{yy}F_x}{F_y^2}(-\frac{F_x}{F_y}) \\ &=-\frac{F_{xx}F_y^2-2F_{xy}F_xF_y+F_{yy}F_x^2}{F_y^3} \end{aligned}

定理二

若函数F(x,y,z)F(x,y,z)满足:

{在点P(x0,y0,z0)的某邻域内具有连续偏导数F(x0,y0,z0)=0Fz(x0,y0,z0)0\begin{aligned} \begin{cases} \text{在点}P(x_0,y_0,z_0)\text{的某邻域内具有连续偏导数}\\ F(x_0,y_0,z_0)=0\\ F_z(x_0,y_0,z_0)\ne 0 \end{cases} \end{aligned}

则相似的有

zx=FxFz,zy=FyFz\frac{\partial z}{\partial x}=-\frac{F_x}{F_z},\frac{\partial z}{\partial y}=-\frac{F_y}{F_z}

证明略

推导

z=f(x,y)z=f(x,y)是方程F(x,y,z)=0F(x,y,z)=0确定隐函数,则

F(x,y,f(x,y))0两边对x求偏导Fx+Fzzx=0 在邻域内Fz0zx=FxFzF(x,y,f(x,y))\equiv 0\\[2pt] \quad\downarrow \text{两边对x求偏导}\\[2pt] F_x+F_z\frac{\partial z}{\partial x}=0\\[2pt] \ \quad\downarrow \text{在邻域内}F_z\ne0\\[2pt] \frac{\partial z}{\partial x}=-\frac{F_x}{F_z}

方程组所确定的隐函数组及其导数

{F(x,y,u,v)=0G(x,y,u,v)=0{u=u(x,y)v=v(x,y)\begin{cases} F(x,y,u,v)=0\\ G(x,y,u,v)=0 \end{cases} \Rightarrow \begin{cases} u=u(x,y)\\ v=v(x,y) \end{cases}

F,GF,G的偏导数组成的行列式

J=(F,G)(u,v)=FuFvGuGvJ=\frac{\partial(F,G)}{\partial(u,v)}= \begin{vmatrix} F_u & F_v\\ G_u & G_v \end{vmatrix}

称为FFGG的雅可比行列式

定理三

与定理一、定理二相似的,将第三条条件换为

JP=(F,G)(u,v)P0J|_P=\frac{\partial(F,G)}{\partial(u,v)}\bigg|_P\ne0

有偏导数公式:

ux=1J(F,G)(x,v)=1FuFvGuGvFxFvGxGv\frac{\partial u}{\partial x}=-\frac1J\frac{\partial(F,G)}{\partial(x,v)}=-\frac1{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}\begin{vmatrix}F_x&F_v\\G_x&G_v\end{vmatrix}

uy=1J(F,G)(y,v)=1FuFvGuGvFyFvGyGv\frac{\partial u}{\partial y}=-\frac1J\frac{\partial(F,G)}{\partial(y,v)}=-\frac1{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}\begin{vmatrix}F_y&F_v\\G_y&G_v\end{vmatrix}

vx=1J(F,G)(u,x)=1FuFvGuGvFuFxGuGx\begin{aligned}&\frac{\partial v}{\partial x}=-\frac1J\frac{\partial(F,G)}{\partial(u,x)}=-\frac1{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}\begin{vmatrix}F_u&F_x\\G_u&G_x\end{vmatrix}\end{aligned}

vy=1J(F,G)(u,y)=1FuFvGuGvFuFyGuGy\begin{aligned}&\frac{\partial v}{\partial y}=-\frac1J\frac{\partial(F,G)}{\partial(u,y)}=-\frac1{\begin{vmatrix}F_u&F_v\\G_u&G_v\end{vmatrix}}\begin{vmatrix}F_u&F_y\\G_u&G_y\end{vmatrix}\end{aligned}

xuyv=0,yu+xv=1xu-yv=0,yu+xv=1,求ux,vx.\frac{\partial u}{\partial x},\frac{\partial v}{\partial x}.

{xuxyvx=utux+xvx=v\begin{cases} x\displaystyle\frac{\partial u}{\partial x}-y\frac{\partial v}{\partial x}=-u\\[2pt] t\displaystyle\frac{\partial u}{\partial x}+x\frac{\partial v}{\partial x}=-v \end{cases}

由题设知J=xyyx=x2+y20J=\begin{vmatrix}x&-y\\-y&x\end{vmatrix}=x^2+y^2\ne0

故有{ux=1Juyvx=xu+yvx2+y2vx=1Jxuyv=xvyux2+y2\text{故有}\left\{\begin{array}{c}\displaystyle\frac{\partial u}{\partial x}=\frac{1}{J} \begin{vmatrix}-u&-y\\-v&x\end{vmatrix}=-\frac{xu+yv}{x^2+y^2}\\[2pt] \displaystyle\frac{\partial v}{\partial x}=\frac{1}{J} \begin{vmatrix}x&-u\\y&-v\end{vmatrix}=- \frac{xv-yu}{x^2+y^2}\end{array}\right.


微甲II-隐函数求导
http://example.com/2024/04/22/微甲II-隐函数求导/
作者
Penner
发布于
2024年4月22日
许可协议